BOOKS

PHYSICS

1.

Sadri Hassani

From Atoms to Galaxies: A Conceptual Physics Approach to Scientific Awareness

College students in the United States are becoming increasingly incapable of differentiating between proven facts delivered by scientific inquiry and the speculations of pseudoscience. In an effort to help stem this disturbing trend, From Atoms to Galaxies: A Conceptual Physics Approach to Scientific Awareness teaches heightened scientific acuity as it educates students about the physical world and gives them answers to questions large and small. Written by Sadri Hassani, the author of several mathematical physics textbooks, this work covers the essentials of modern physics, in a way that is as thorough as it is compelling and accessible.

Some of you might want to know …

. . . How did Galileo come to think about the first law of motion?

. . . Did Newton actually discover gravity by way of an apple and an accident?

Or maybe you have mulled over…

. . . Is it possible for Santa Claus to deliver all his toys?

. . . Is it possible to prove that Elvis does not visit Graceland every midnight?

Or perhaps you’ve even wondered …

. . . If ancient Taoism really parallels modern physics?

. . . If psychoanalysis can actually be called a science?

. . . How it is that some philosophies of science may imply that a 650-year-old woman can give birth to a child?

No Advanced Mathematics Required

A primary textbook for undergraduate students not majoring in physics, From Atoms to Galaxies examines physical laws and their consequences from a conceptual perspective that requires no advanced mathematics. It explains quantum physics, relativity, nuclear and particle physics, gauge theory, quantum field theory, quarks and leptons, and cosmology. Encouraging students to subscribe to proven causation rather than dramatic speculation, the book:

Defines the often obscured difference between science and technology, discussing how this confusion taints both common culture and academic rigor

Explores the various philosophies of science, demonstrating how errors in our understanding of scientific principles can adversely impact scientific awareness

Exposes how pseudoscience and New Age mysticism advance unproven conjectures as dangerous alternatives to proven science

Based on courses taught by the author for over 15 years, this textbook has been developed to raise the scientific awareness of the untrained reader who lacks a technical or mathematical background. To accomplish this, the book lays the foundation of the laws that govern our universe in a nontechnical way, emphasizing topics that excite the mind, namely those taken from modern physics, and exposing the abuses made of them by the New Age gurus and other mystagogues. It outlines the methods developed by physicists for the scientific investigation of nature, and contrasts them with those developed by the outsiders who claim to be the owners of scientific methodology. Each chapter includes essays, which use the material developed in that chapter to debunk misconceptions, clarify the nature of science, and explore the history of physics as it relates to the development of ideas. Noting the damage incurred by confusing science and technology, the book strives to help the reader to emphatically demarcate the two, while clearly demonstrating that science is the only element capable of advancing technology.

2.

Christopher Bradley, Arthur Cracknell

The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups

This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups.

3.

I.B. Khriplovich

Theoretical Kaleidoscope

This book is based on material taught in general and special theoretical physics courses given by I.B. Khriplovich at the Physics Department of Novosibirsk University, Russia. The book contains the analysis of concrete problems in classical mechanics, classical electrodynamics, quantum mechanics, and relativistic quantum mechanics.

4.

Alexia Auffeves and Dario Gerace

Strong Light-Matter Coupling: From Atoms to Solid-State Physics

The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes.

This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptual, theoretical and experimental basis on strong light-matter coupling, both in the classical and in the quantum regimes. In addition, the emphasis is on new forefront research topics currently developed around the physics of strong light-matter interaction in the atomic and solid-state scenario.

Readership: Undergraduate, graduate students and researchers interested in strong light-matter coupling.

5.

Sofia Paredes

Extreme Photonics & Applications (NATO Science for Peace and Security Series B: Physics and Biophysics)

“Extreme Photonics & Applications” arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies.